기초수학실습_배현식

1983 days 전, qogustlr7 작성

1 in ZZ 
       
True
True
1/2 in ZZ 
       
False
False
1/2 in QQ 
       
True
True
sqrt(2) in QQ 
       
False
False
sqrt(2) in RR 
       
True
True
i^2 
       
-1
-1
I in RR 
       
False
False
I in CC 
       
True
True
RR(sqrt(121)) 
       
11.0000000000000
11.0000000000000
1 != 1 
       
False
False
not (True or False) == (False and True) 
       
True
True
1 >= 1 
       
True
True
1 + i >= 2 - i 
       
(I + 1) >= (-I + 2)
(I + 1) >= (-I + 2)
((3/2) > 1) or (2/3 < 1) 
       
True
True
((3/2) > 1) ^^ (2/3 < 1) 
       
False
False
((3/2) > 1) ^^ (2/3 < 1) # ^^ xor 배타적 논리합 
       
False
False
x > 1/2 
       
x > (1/2)
x > (1/2)
s=12 
       
       
12
12
t=7 
       
t=t+1 
       
       
8
8
a,b=1,2 
       
       
1
1
       
2
2
c,d,e=2,3,5 
       
c,d,e 
       
(2, 3, 5)
(2, 3, 5)
a = b = 1 
       
a b 
       
1
1
f(x) = x^12 + x^9 + x^3 + 1 
       
f(12) 
       
8921260230337
8921260230337
[6,28,496,8128] 
       
[6, 28, 496, 8128]
[6, 28, 496, 8128]
[1..7] 
       
[1, 2, 3, 4, 5, 6, 7]
[1, 2, 3, 4, 5, 6, 7]
[1..12] 
       
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
[2,4..10] 
       
[2, 4, 6, 8, 10]
[2, 4, 6, 8, 10]
[1,4..13] 
       
[1, 4, 7, 10, 13]
[1, 4, 7, 10, 13]
[1,11..35] 
       
[1, 11, 21, 31]
[1, 11, 21, 31]
[pi,4*pi..32] 
       
[pi, 4*pi, 7*pi, 10*pi]
[pi, 4*pi, 7*pi, 10*pi]
A = Set([2,3,3,3,2,1,8,6,3]) 
       
       
{8, 1, 2, 3, 6}
{8, 1, 2, 3, 6}
A.cardinality() 
       
5
5
8 in A 
       
True
True
10 in A 
       
False
False
12 in A 
       
False
False
B = Set([8,6,17,-4,20, -2 ]) 
       
       
{17, 20, 6, 8, -4, -2}
{17, 20, 6, 8, -4, -2}
A.cardinality(B) 
       
Traceback (click to the left of this block for traceback)
...
TypeError: cardinality() takes exactly 1 argument (2 given)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "_sage_input_81.py", line 10, in <module>
    exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("QS5jYXJkaW5hbGl0eShCKQ=="),globals())+"\\n"); execfile(os.path.abspath("___code___.py"))
  File "", line 1, in <module>
    
  File "/tmp/tmpEsV5OC/___code___.py", line 2, in <module>
    exec compile(u'A.cardinality(B)
  File "", line 1, in <module>
    
TypeError: cardinality() takes exactly 1 argument (2 given)
A.intersection(B) 
       
{8, 6}
{8, 6}
A.difference(B) 
       
{1, 2, 3}
{1, 2, 3}
B.difference(A) 
       
{17, 20, -4, -2}
{17, 20, -4, -2}
A.symmetric_difference(B) 
       
{17, 2, 3, 20, 1, -4, -2}
{17, 2, 3, 20, 1, -4, -2}
tan(x) 
       
tan(x)
tan(x)
x=0 
       
tan(0) 
       
0
0
x= pi/4 
       
tan(pi/4) 
       
1
1
x= pi/2 
       
tan(pi/2) 
       
Infinity
Infinity
x= 3*pi/4 
       
tan(3*pi/4) 
       
-1
-1
x= pi 
       
tan(pi) 
       
0
0
A = Set([1,2,3]); A 
       
{1, 2, 3}
{1, 2, 3}
powA = A.subsets(); powA 
       
Subsets of {1, 2, 3}
Subsets of {1, 2, 3}
[3,6..20] 
       
[3, 6, 9, 12, 15, 18]
[3, 6, 9, 12, 15, 18]
[tan(x)for x in [0,pi/4,..pi]] 
       
[0, 1, Infinity, -1, 0]
[0, 1, Infinity, -1, 0]
14 // 4 
       
3
3
14 % 4 
       
2
2
divmod(14,4) 
       
(3, 2)
(3, 2)
3.divides(15) 
       
True
True
5.divides(17) 
       
False
False
17.divides(17) 
       
True
True
12.divisors() 
       
[1, 2, 3, 4, 6, 12]
[1, 2, 3, 4, 6, 12]
101.divisors() 
       
[1, 101]
[1, 101]
(2^19-1).is_prime() 
       
True
True
153.is_prime() 
       
False
False
(100+1).divisors () 
       
[1, 101]
[1, 101]
63.factor() 
       
3^2 * 7
3^2 * 7
factor(62) 
       
2 * 31
2 * 31
factor(82) 
       
2 * 41
2 * 41
24.prime_divisors() 
       
[2, 3]
[2, 3]
divisors(24) 
       
[1, 2, 3, 4, 6, 8, 12, 24]
[1, 2, 3, 4, 6, 8, 12, 24]
prime_divisors(24) 
       
[2, 3]
[2, 3]
prime_divisors(63) 
       
[3, 7]
[3, 7]
lcm(21,43) 
       
903
903
divmod(956,98) 
       
(9, 74)
(9, 74)
956//98 
       
9
9
956%98 
       
74
74
3.divides(234878) 
       
False
False
divisors(134) 
       
[1, 2, 67, 134]
[1, 2, 67, 134]
divisors(491) 
       
[1, 491]
[1, 491]
divisors(422) 
       
[1, 2, 211, 422]
[1, 2, 211, 422]
divisors(1002) 
       
[1, 2, 3, 6, 167, 334, 501, 1002]
[1, 2, 3, 6, 167, 334, 501, 1002]
134.prime_divisors() 
       
[2, 67]
[2, 67]
491.prime_divisors() 
       
[491]
[491]
1002.prime_divisors() 
       
[2, 3, 167]
[2, 3, 167]
422.prime_divisors() 
       
[2, 211]
[2, 211]
gcd(2,5) 
       
1
1
gcd(4,10) 
       
2
2
gcd(18,51) 
       
3
3
lcm(2,5) 
       
10
10
lcm(4,10) 
       
20
20
lcm(18,51) 
       
306
306
g=gcd(18,51) 
       
l=lcm(18,51) 
       
g*l == 18*51 
       
True
True
min(1/2,1/3) 
       
1/3
1/3
abs(-10) 
       
10
10
 
       
226
226