0114 기초수학실습 김승민

1982 days 전, ksm8138 작성

var('y, z') solve([ 2*x + 3*y + 5*z == 1, 4*x + 6*y + 10*z == 2, 6*x + 9*y + 15*z == 3], x,y,z) 
       
[[x == -5/2*r1 - 3/2*r2 + 1/2, y == r2, z == r1]]
[[x == -5/2*r1 - 3/2*r2 + 1/2, y == r2, z == r1]]
solve([x^3-x==7*x^2-7],x) 
       
[x == 7, x == -1, x == 1]
[x == 7, x == -1, x == 1]
solve([abs(x-7)>=3],x) 
       
#0: solve_rat_ineq(ineq=abs(x-7) >= 3)
[[x == 10], [x == 4], [x < 4], [10 < x]]
#0: solve_rat_ineq(ineq=abs(x-7) >= 3)
[[x == 10], [x == 4], [x < 4], [10 < x]]
solve([2*x+y==17,x-3*y==-16],x,y) 
       
[[x == 5, y == 7]]
[[x == 5, y == 7]]
f(x)=sin(x) p = plot(f(x), (x,-pi/2, pi/2), axes_labels=['x','sin(x)'], color='green') +plot(f(x), (2*x*x, 2*pi, pi/3),color='red') p.show() 
       
p = plot(f(x), (x,-pi/2, pi/2), linestyle='-', thickness=5) p.show() 
       
f(x) = (x^3 + x^2 + x)/(x^2 - x -2 ) p = plot(f(x), (x, -5,5),color='black') p.show(xmin=-5, xmax=4, ymin=-20, ymax=20) 
       
f(x) = sin(pi*x-x) p=plot(f(x),(x,-1,1),color='red',thickness=10) p.show() 
       
f(x) = cos(pi*x-x) p=plot(f(x),(x,-1,1),color='blue',thickness=10) p.show() 
       
f(x) = sin(pi*x-x) g(x) = cos(pi*x-x) p=plot(f(x),(x,-1,1),color='red',thickness=10) q=plot(g(x),(x,-1,1),color='blue',thickness=10) r=p+q r.show() 
       
f(x)= (1/x) p=plot(f(x),(x,-1,1)) p.show(ymin=-10,ymax=10) 
       
f(x)=2/(x-5) plot(f(x), (x, 2, 7), ymax=10, ymin=-10) 
       
f(x)=(x+2)/(x^2-x-6) plot(f(x), (x, -4, 6), ymax=10, ymin=-10) 
       
x,y = var("x y") f(x,y) = x^2 + y^2 ==4 p = plot3d(f(x,y), (x,-10,10), (y,-10,10)) p.show() 
       
Sleeping...
If no image appears re-execute the cell. 3-D viewer has been updated.