# Generating Pascal matrix (n=87)
def pascal_matrix(n):
A=matrix(n,n,0)
for i in range(1, n):
A[i,0]=1
A[i,i-1]=1
for j in range(1,i-1):
A[i,j]=((A[i-1,j-1] % 2) + (A[i-1,j] % 2)) % 2
A=A+A.transpose()
return A
A=pascal_matrix(87)
# size of matrices without zero eigenvalues
list=[3, 7, 11, 23, 43, 87]
m=len(list)
for i in range(m-1):
n=list[i]
s=list[i+1]-list[i]
print "n= ", n
B=A.submatrix(0,0,n,n)
D=A.submatrix(n,n,s,s)
alp=A.submatrix(n,0,s,n)
show(D-alp*B.inverse()*alp.transpose())
|
n= 3
n= 7
n= 11
n= 23
n= 43
n= 3
n= 7
n= 11
n= 23
n= 43
|