Sec 6.2

1127 days 전, jhlee2chn 작성

$\int sin^5 x cos^2 x dx$

f(x)=sin(x)^5*cos(x)^2 integral(f(x), x) 
       
-1/7*cos(x)^7 + 2/5*cos(x)^5 - 1/3*cos(x)^3
-1/7*cos(x)^7 + 2/5*cos(x)^5 - 1/3*cos(x)^3

$\int _0 ^{\pi} sin^2 x dx$

f(x)=sin(x)^2 integral(f(x), x, 0, pi) 
       
1/2*pi
1/2*pi
plot(f(x), (x, 0, pi), fill=True) 
       

$\int \frac{1}{x^2\sqrt{x^2+4}}dx$

f(x)=1/(x^2*sqrt(x^2+4)) integral(f(x), x) 
       
-1/4*sqrt(x^2 + 4)/x
-1/4*sqrt(x^2 + 4)/x