# 기초수학실습-신민석

## 2029 days 전, sms970316@naver.com 작성

plot(Piecewise([[(0,1),x^2],[(1,2),1],[(2,3),x^2-3]]))
1 in ZZ
 True True
sqrt(2) in QQ
 False False
i^2
 -1 -1
QQ(.5)
 1/2 1/2
not True
 False False
not (True or False) == (False and True)
 True True
1 >= 1
 True True
1 + i >= 2 - i
 (I + 1) >= (-I + 2) (I + 1) >= (-I + 2)
((3/2) > 1) or (2/3 < 1)
 True True
((3/2) > 1) ^^ (2/3 < 1) # ^^ xor 배타적 논리합
 False False
x > 1/2
 x > (1/2) x > (1/2)
s=12
 12 12
t=7
t=t+1
 8 8
a,b=1,2
 1 1
 2 2
c,d,e=2,3,5
c,d,e
 (2, 3, 5) (2, 3, 5)
x^2 + x + 1
 13 13
[6,28,496,8128]
 [6, 28, 496, 8128] [6, 28, 496, 8128]
[1..7]
 [1, 2, 3, 4, 5, 6, 7] [1, 2, 3, 4, 5, 6, 7]
[1,4..13]
 [1, 4, 7, 10, 13] [1, 4, 7, 10, 13]
[1,11..31]
 [1, 11, 21, 31] [1, 11, 21, 31]
 {8, 1, 2, 3, 6} {8, 1, 2, 3, 6}
A = Set([2,3,3,3,2,1,8,6,3])
 {8, 1, 2, 3, 6} {8, 1, 2, 3, 6}
A.cardinality()
 5 5
8 in A
 True True
10 in A
 False False
B = Set([8,6,17,-4,20, -2 ])
A.union(B)
 {1, 2, 3, 6, 8, 17, 20, -4, -2} {1, 2, 3, 6, 8, 17, 20, -4, -2}
A.intersection(B)
 {8, 6} {8, 6}
A.difference(B)
 {1, 2, 3} {1, 2, 3}
A.symmetric_differenc
 Traceback (click to the left of this block for traceback) ... AttributeError: 'Set_object_enumerated_with_category' object has no attribute 'symmetric_differenc' Traceback (most recent call last): File "", line 1, in File "_sage_input_45.py", line 10, in exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("QS5zeW1tZXRyaWNfZGlmZmVyZW5j"),globals())+"\\n"); execfile(os.path.abspath("___code___.py")) File "", line 1, in File "/tmp/tmpbDKl0X/___code___.py", line 2, in exec compile(u'A.symmetric_differenc File "", line 1, in File "parent.pyx", line 761, in sage.structure.parent.Parent.__getattr__ (sage/structure/parent.c:6823) File "misc.pyx", line 251, in sage.structure.misc.getattr_from_other_class (sage/structure/misc.c:1606) AttributeError: 'Set_object_enumerated_with_category' object has no attribute 'symmetric_differenc'
[tan(x) for x in[0, pi/4..pi]]
 [0, 1, Infinity, -1, 0] [0, 1, Infinity, -1, 0]

divmod(14,4)
 (3, 2) (3, 2)
3.divides(15)
 True True
12.divisors()
 [1, 2, 3, 4, 6, 12] [1, 2, 3, 4, 6, 12]
(2^19-1).is_prime()
 True True
153.is_prime()
 False False
63.factor()
 3^2 * 7 3^2 * 7
divmod(956,98)
 (9, 74) (9, 74)
3.divides(234878)
 False False
134.divisors()
 [1, 2, 67, 134] [1, 2, 67, 134]
491.divisors()
 [1, 491] [1, 491]
422.divisors()
 [1, 2, 211, 422] [1, 2, 211, 422]
1002.divisors()
 [1, 2, 3, 6, 167, 334, 501, 1002] [1, 2, 3, 6, 167, 334, 501, 1002]
134.prime_divisors()
 [2, 67] [2, 67]
491.prime_divisors()
 [491] [491]
422.prime_divisors()
 [2, 211] [2, 211]
1002.prime_divisors()
 [2, 3, 167] [2, 3, 167]
g=gcd(18, 51)
l=lcm(18,51)
g*l==18*51
 True True
min(1/2,1/3)
 1/3 1/3
abs(-10)
 10 10
abs(4)
 4 4