# 초등수학

## 2020 days 전, whwnqjq119 작성

p1=plot(x*sin(3/x), x, -0.5,0, color='blue') p2=plot(x*sin(3/x), x, 0,0.5, color='red') show(p1+p2, ymax=0.3, ymin=-0.3, aspect_ratio=1)
plot(Piecewise([[(0,1),x^2+2*x],[(1,2),3],[(2,3),x^2+2]]))
limit(x*sin(3/x), x=0)
 0 0
1/2 in ZZ
 False False
1 in ZZ
 True True
show(solve(3*x+5==-5-3*x, x))
 \newcommand{\Bold}[1]{\mathbf{#1}}\left[x = \left(-\frac{5}{3}\right)\right]
1 in CC
 True True
not True
 False False
not False
 True True
False and False
 False False
True or True
 True True
1 != 1
 False False
5^3 < 2^9
 True True
1 >= 1
 True True
1 + i >= 2 - i
 (I + 1) >= (-I + 2) (I + 1) >= (-I + 2)
((3/2) > 1) or (2/3 < 1)
 True True
((3/2) > 1) ^^ (2/3 < 1) # ^^ xor
 False False
x > 1/2
 x > (1/2) x > (1/2)
s=14 s+24
 38 38
t=24
 24 24
t+2
 26 26
t,s,y = 25, 53, 64
24*t + 23*s + 34*y
 3098 3098
14 // 7
 2 2
14 % 7
 0 0
A = Set([2,3,3,3,2,1,8,6,3])
 {8, 1, 2, 3, 6} {8, 1, 2, 3, 6}
A.cardinality()
 5 5
9*2
 18 18
p1=plot(x*sin(3/x), x, -.5,0, color='gold') p2=plot(x*sin(3/x), x, 0,.5, color='olivedrab') show(p1+p2, ymax=0.5, ymin=-0.5, aspect_ratio=1)
956 // 98
 9 9
956 % 98
 74 74
3.divides(2345878)
 False False
134.divisors()
 [1, 2, 67, 134] [1, 2, 67, 134]
491.divisors()
 [1, 491] [1, 491]
422.divisors()
 [1, 2, 211, 422] [1, 2, 211, 422]
1002.divisors()
 [1, 2, 3, 6, 167, 334, 501, 1002] [1, 2, 3, 6, 167, 334, 501, 1002]
491.is_prime()
 True True
44647684687436534183465795426138544384359487254.is_prime()
 False False
[0, pi/4..pi]
 [0, 1/4*pi, 1/2*pi, 3/4*pi, pi] [0, 1/4*pi, 1/2*pi, 3/4*pi, pi]
show(108 / 72)
 \newcommand{\Bold}[1]{\mathbf{#1}}\frac{3}{2}
divmod(245,42)
 (5, 35) (5, 35)
44647684687436534183465795426138544384359487254.divisors()
 [1, 2, 37, 74, 603347090370763975452240478731601951139993071, 1206694180741527950904480957463203902279986142, 22323842343718267091732897713069272192179743627, 44647684687436534183465795426138544384359487254] [1, 2, 37, 74, 603347090370763975452240478731601951139993071, 1206694180741527950904480957463203902279986142, 22323842343718267091732897713069272192179743627, 44647684687436534183465795426138544384359487254]
lcm(543854,5874354)
 1597395460158 1597395460158
factor(62)
 2 * 31 2 * 31
gcd(2,5)
 1 1
gcd(4,10)
 2 2
gcd(18,51)
 3 3
lcm(2,5)
 10 10
lcm(4,10)
 20 20
lcm(18,51)
 306 306
divmod(956,98)
 (9, 74) (9, 74)
abs(-10-425)
 435 435