정수지

2025 days 전, suziejjang 작성

s=12 
       
       
12
12
s=34 
       
       
34
34
t=7 
       
       
7
7
a,b=1,2 
       
f(x)=x^2 + x + 1 f(2) 
       
7
7
x=2 
       
[1..9] 
       
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[4..9] 
       
[4, 5, 6, 7, 8, 9]
[4, 5, 6, 7, 8, 9]
f(x) = x^2 + x +9 
       
f(9999999999) 
       
99999999990000000009
99999999990000000009
f = x^3 + x + 1 
       
f x^3 + x + 1 
       
739
739
f(x)= x^8 + x + 1 
       
f(3) 
       
6565
6565
A = Set([2,3,3,3,2,1,8,6,3]) A 
       
{8, 1, 2, 3, 6}
{8, 1, 2, 3, 6}
tan(x) 
       
0
0
tan(pi/2) 
       
Infinity
Infinity
tan(0) 
       
0
0
tan(pi) 
       
0
0
sin(pi) 
       
0
0
[tan(x) for x in [0, pi/4..pi]] 
       
[0, 1, Infinity, -1, 0]
[0, 1, Infinity, -1, 0]
12.divisors() 
       
[1, 2, 3, 4, 6, 12]
[1, 2, 3, 4, 6, 12]
M=Set([3,6..20]) 
       
[3, 6, 9, 12, 15, 18]
[3, 6, 9, 12, 15, 18]
       
{18, 3, 6, 9, 12, 15}
{18, 3, 6, 9, 12, 15}
M.subsets(); M.cardinality() 
       
Subsets of {18, 3, 6, 9, 12, 15}
6
Subsets of {18, 3, 6, 9, 12, 15}
6
49.prime_divisors() 
       
[7]
[7]
956//98 
       
9
9
956%98 
       
74
74
234878//3 
       
78292
78292
134.divisors() 
       
[1, 2, 67, 134]
[1, 2, 67, 134]
491.divisors() 
       
[1, 491]
[1, 491]
422.divisors() 
       
[1, 2, 211, 422]
[1, 2, 211, 422]
1002.divisors() 
       
[1, 2, 3, 6, 167, 334, 501, 1002]
[1, 2, 3, 6, 167, 334, 501, 1002]
134.prime_divisors() 
       
[2, 67]
[2, 67]
491.prime_divisors() 
       
[491]
[491]
422.prime_divisors() 
       
[2, 211]
[2, 211]
1002.prime_divisors() 
       
[2, 3, 167]
[2, 3, 167]
gcd(2, 5) 
       
1
1
plot(abs(x),(x,-3,3))