# 정수지

## 2025 days 전, suziejjang 작성

s=12
 12 12
s=34
 34 34
t=7
 7 7
a,b=1,2
f(x)=x^2 + x + 1 f(2)
 7 7
x=2
[1..9]
 [1, 2, 3, 4, 5, 6, 7, 8, 9] [1, 2, 3, 4, 5, 6, 7, 8, 9]
[4..9]
 [4, 5, 6, 7, 8, 9] [4, 5, 6, 7, 8, 9]
f(x) = x^2 + x +9
f(9999999999)
 99999999990000000009 99999999990000000009
f = x^3 + x + 1
f x^3 + x + 1
 739 739
f(x)= x^8 + x + 1
f(3)
 6565 6565
A = Set([2,3,3,3,2,1,8,6,3]) A
 {8, 1, 2, 3, 6} {8, 1, 2, 3, 6}
tan(x)
 0 0
tan(pi/2)
 Infinity Infinity
tan(0)
 0 0
tan(pi)
 0 0
sin(pi)
 0 0
[tan(x) for x in [0, pi/4..pi]]
 [0, 1, Infinity, -1, 0] [0, 1, Infinity, -1, 0]
12.divisors()
 [1, 2, 3, 4, 6, 12] [1, 2, 3, 4, 6, 12]
M=Set([3,6..20])
 [3, 6, 9, 12, 15, 18] [3, 6, 9, 12, 15, 18]
 {18, 3, 6, 9, 12, 15} {18, 3, 6, 9, 12, 15}
M.subsets(); M.cardinality()
 Subsets of {18, 3, 6, 9, 12, 15} 6 Subsets of {18, 3, 6, 9, 12, 15} 6
49.prime_divisors()
 [7] [7]
956//98
 9 9
956%98
 74 74
234878//3
 78292 78292
134.divisors()
 [1, 2, 67, 134] [1, 2, 67, 134]
491.divisors()
 [1, 491] [1, 491]
422.divisors()
 [1, 2, 211, 422] [1, 2, 211, 422]
1002.divisors()
 [1, 2, 3, 6, 167, 334, 501, 1002] [1, 2, 3, 6, 167, 334, 501, 1002]
134.prime_divisors()
 [2, 67] [2, 67]
491.prime_divisors()
 [491] [491]
422.prime_divisors()
 [2, 211] [2, 211]
1002.prime_divisors()
 [2, 3, 167] [2, 3, 167]
gcd(2, 5)
 1 1
plot(abs(x),(x,-3,3))