기초수학실습-0114-이상원

2030 days 전, zldnjdiwl2 작성

b=[] for a in[1..100]: if a.is_prime(): b.append(a) print b 
       
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97]
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
P(x)=(x-2)^3*(x^2-4*x+3)*2 P(x) 
       
2*(x^2 - 4*x + 3)*(x - 2)^3
2*(x^2 - 4*x + 3)*(x - 2)^3
expand(P(x)) 
       
2*x^5 - 20*x^4 + 78*x^3 - 148*x^2 + 136*x - 48
2*x^5 - 20*x^4 + 78*x^3 - 148*x^2 + 136*x - 48
factor(2*x^5 - 20*x^4 + 78*x^3 - 148*x^2 + 136*x - 48) 
       
2*(x - 1)*(x - 2)^3*(x - 3)
2*(x - 1)*(x - 2)^3*(x - 3)
(P(x)/(x-1)) 
       
2*(x^2 - 4*x + 3)*(x - 2)^3/(x - 1)
2*(x^2 - 4*x + 3)*(x - 2)^3/(x - 1)
(P(x)/(x-1)).simplify_full() 
       
2*x^4 - 18*x^3 + 60*x^2 - 88*x + 48
2*x^4 - 18*x^3 + 60*x^2 - 88*x + 48
W.<x>=QQ[] W(P(x)).quo_rem(x^2-5*x+1) 
       
(2*x^3 - 10*x^2 + 26*x - 8, 70*x - 40)
(2*x^3 - 10*x^2 + 26*x - 8, 70*x - 40)
(2*x^3 - 10*x^2 + 26*x - 8)*(x^2-5*x+1)+(70*x - 40) 
       
2*x^5 - 20*x^4 + 78*x^3 - 148*x^2 + 136*x - 48
2*x^5 - 20*x^4 + 78*x^3 - 148*x^2 + 136*x - 48
var('x, y') solve( [3*x - y == 2, -2*x -y == 1 ], x,y) 
       
[[x == (1/5), y == (-7/5)]]
[[x == (1/5), y == (-7/5)]]
solve( [ 2*x + y == -1 , -4*x - 2*y == 2],x,y) 
       
[[x == -1/2*r1 - 1/2, y == r1]]
[[x == -1/2*r1 - 1/2, y == r1]]
solve( [ 2*x - y == -1 , 2*x - y == 2],x,y) 
       
[]
[]
var('z') solve([ 2*x + 3*y + 5*z == 1, 4*x + 6*y + 10*z == 2, 6*x + 9*y + 15*z == 3], x,y,z) 
       
[[x == -5/2*r2 - 3/2*r3 + 1/2, y == r3, z == r2]]
[[x == -5/2*r2 - 3/2*r3 + 1/2, y == r3, z == r2]]
solve([x^3 -x == 7*x^2-7],x) 
       
[x == 7, x == -1, x == 1]
[x == 7, x == -1, x == 1]
var('t') solve(abs(t-7)>=3, t) 
       
#0: solve_rat_ineq(ineq=abs(t-7) >= 3)
[[t == 10], [t == 4], [t < 4], [10 < t]]
#0: solve_rat_ineq(ineq=abs(t-7) >= 3)
[[t == 10], [t == 4], [t < 4], [10 < t]]
solve([2*x + y == 17, x - 3*y == -16],x,y) 
       
[[x == 5, y == 7]]
[[x == 5, y == 7]]
f(x) = sin(x) p = plot(f(x),color='red') 
       
f(x) = cos(x) p = plot(f(x), (x,0, 2*pi)) p.show() 
       
f(x) = cos(x) p = plot(f(x), (x, 0, pi*2), color='green')+plot(sin(x), (x,0,2*pi), color='red') p.show() 
       
plot(f(x), (x,-pi/2, pi/2), axes_labels=['x','sin(x)'], color='purple') 
       
plot(f(x), (x, -5,5)) 
       
plot(f(x), (x,0,2*pi),linestyle="--",thickness=3) 
       
f(x) = sin(x) g(x) = cos(x) p = plot(f(x),(x,-pi/2,pi/2), color='black') q = plot(g(x), (x,-pi/2, pi/2), color='red') p + q 
       
f(x) = (x^3 + x^2 + x)/(x^2 - x -2 ) p = plot(f(x), (x, -5,5)) p.show() 
       
p.show(xmin=-2, xmax=4, ymin=-20, ymax=20)plot(sin(pi*x-pi), (x, -1, 1),color="red",thickness=3) 
       
plot(sin(pi*x-pi), (x, -1, 1),color="red",thickness=3) 
       
plot(cos(pi*x-pi), (x, -1, 1),color="blue",thickness=3) 
       
plot(1/x, (x,-1,1),ymin=-10,ymax=10) 
       
P(x)=2*x^3+3*x^2-5*x-6 solve(P(x)==0, x) 
       
solve(P(x)==0, x) 
       
[x == -2, x == -1, x == (3/2)]
[x == -2, x == -1, x == (3/2)]
plot(x^2+2*x-25,ymax=1) 
       
P(x)=2*x^3+3*x^2-5*x-6 
       
solve(P(x)==0, x) 
       
[x == -2, x == -1, x == (3/2)]
[x == -2, x == -1, x == (3/2)]
plot(P(x), (x, -4, 4), ymax=20, ymin=-20) 
       
P(x)=4*x^4++4*x^3-9*x^2-x+2 solve(P(x)==0, x) 
       
solve(P(x)==0, x) 
       
[x == (1/2), x == -2, x == 1, x == (-1/2)]
[x == (1/2), x == -2, x == 1, x == (-1/2)]
f(x)=2/(x-5) plot(f(x), (x, 2, 7), ymax=10, ymin=-10) 
       
f(x)=(2*x^2+1)/(x^2-4*x+3) 
       
x,y = var("x y") f(x,y) = x^2 - y^2 p = plot3d(f(x,y), (x,-10,10), (y,-10,10)) p.show() 
       
Sleeping...
If no image appears re-execute the cell. 3-D viewer has been updated.