실습1

2384 days 전, jhlee2chn 작성

 
       

1. 실습한 내용

1 $\in$ $Z$.

1 in ZZ 
       
True
True
1/2 in ZZ 
       
False
False
1/2 in QQ 
       
True
True
sqrt(2) in QQ 
       
False
False
sqrt(2) in RR 
       
True
True
2^(1/3) in RR 
       
True
True
sqrt(4) in QQ 
       
True
True
i^2 
       
-1
-1
I in RR 
       
False
False
I in CC 
       
True
True
QQ(.5) 
       
1/2
1/2
RR(sqrt(2)) 
       
1.41421356237310
1.41421356237310
(sqrt(2)).n(digits=20) 
       
1.4142135623730950488
1.4142135623730950488
not True 
       
False
False
True and False 
       
False
False
True or False 
       
True
True
(True or False) and False 
       
False
False
1 == 1 
       
True
True
not(True or False) == True and False 
       
False
False
not (True or False) == (False and True) 
       
True
True
1 + i >= 2 - i 
       
(I + 1) >= (-I + 2)
(I + 1) >= (-I + 2)
((3/2) > 1) or (2/3 < 1) 
       
True
True
((3/2) > 1) ^^ (2/3 < 1) 
       
False
False
x=1/3 x > 1/2 
       
False
False
t=t+1 t 
       
9
9
((3/2) > 1) ^^ (2/3 < 1) 
       
False
False
s=12;s 
       
12
12
t=7 t=t+1 t 
       
8
8
a,b=1,2 a 
       
1
1
       
2
2
c,d,e=2,3,5 
       
c,d,e 
       
(2, 3, 5)
(2, 3, 5)
a = b = 1 
       
       
1
1
       
1
1
f(x) = x^2 + x + 1 
       
f(2) 
       
7
7
f(3) 
       
13
13
[6, 28, 496, 8128] 
       
[6, 28, 496, 8128]
[6, 28, 496, 8128]
[1..7] 
       
[1, 2, 3, 4, 5, 6, 7]
[1, 2, 3, 4, 5, 6, 7]
[4..9] 
       
[4, 5, 6, 7, 8, 9]
[4, 5, 6, 7, 8, 9]
[2,4..10] 
       
[2, 4, 6, 8, 10]
[2, 4, 6, 8, 10]
[1,4..13] 
       
[1, 4, 7, 10, 13]
[1, 4, 7, 10, 13]
[1,11..31] 
       
[1, 11, 21, 31]
[1, 11, 21, 31]
[1,11..35] 
       
[1, 11, 21, 31]
[1, 11, 21, 31]
[pi,4*pi..32] 
       
[pi, 4*pi, 7*pi, 10*pi]
[pi, 4*pi, 7*pi, 10*pi]
[pi/4, pi/2..2*pi] 
       
[1/4*pi, 1/2*pi, 3/4*pi, pi, 5/4*pi, 3/2*pi, 7/4*pi, 2*pi]
[1/4*pi, 1/2*pi, 3/4*pi, pi, 5/4*pi, 3/2*pi, 7/4*pi, 2*pi]
[sin(t) for t in [pi/4, pi/2..2*pi]] 
       
[1/2*sqrt(2), 1, 1/2*sqrt(2), 0, -1/2*sqrt(2), -1, -1/2*sqrt(2), 0]
[1/2*sqrt(2), 1, 1/2*sqrt(2), 0, -1/2*sqrt(2), -1, -1/2*sqrt(2), 0]
A = Set([2,3,3,3,2,1,8,6,3]) A 
       
{8, 1, 2, 3, 6}
{8, 1, 2, 3, 6}
C = Set([sin(t) for t in [pi/4, pi/2..2*pi]]) C 
       
{0, 1, -1/2*sqrt(2), 1/2*sqrt(2), -1}
{0, 1, -1/2*sqrt(2), 1/2*sqrt(2), -1}
A.cardinality() 
       
5
5
8 in A 
       
True
True
B = Set([8,6,17,-4,20, -2 ]) B 
       
{17, 20, 6, 8, -4, -2}
{17, 20, 6, 8, -4, -2}
A.union(B).cardinality() 
       
9
9
A.intersection(B).cardinality() 
       
2
2
A.difference(B) 
       
{1, 2, 3}
{1, 2, 3}
B.difference(A) 
       
{17, 20, -4, -2}
{17, 20, -4, -2}
A.symmetric_difference(B) 
       
{17, 2, 3, 20, 1, -4, -2}
{17, 2, 3, 20, 1, -4, -2}
A = Set([1,2,3]); A 
       
{1, 2, 3}
{1, 2, 3}
powA = A.subsets(); powA 
       
Subsets of {1, 2, 3}
Subsets of {1, 2, 3}
powA.list() 
       
[{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]
[{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]
pairsA = A.subsets(2); pairsA 
       
Subsets of {1, 2, 3} of size 2
Subsets of {1, 2, 3} of size 2
pairsA.list() 
       
[{1, 2}, {1, 3}, {2, 3}]
[{1, 2}, {1, 3}, {2, 3}]
[-9, -7..30] 
       
[-9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27,
29]
[-9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29]
[-18, -15..100] 
       
[-18, -15, -12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33,
36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87,
90, 93, 96, 99]
[-18, -15, -12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99]
Set([tan(t) for t in [0, pi/4..pi]]) 
       
{0, 1, Infinity, -1}
{0, 1, Infinity, -1}
A=Set([3, 6..20]) A 
       
{18, 3, 6, 9, 12, 15}
{18, 3, 6, 9, 12, 15}
powA=A.subsets() powA.cardinality() 
       
64
64
f(x)=x^2+3*x plot(f(x), (x, -5, 5)) 
       
f(x)=x^2+3*x plot(f(x), (x, -5, 5))